Tuesday, 24 January 2017

Data Mining Introduction

Data Mining Introduction

Introduction

We have been "manually" extracting data in relation to the patterns they form for many years but as the volume of data and the varied sources from which we obtain it grow a more automatic approach is required.

The cause and solution to this increase in data to be processed has been because the increasing power of computer technology has increased data collection and storage. Direct hands-on data analysis has increasingly been supplemented, or even replaced entirely, by indirect, automatic data processing. Data mining is the process uncovering hidden data patterns and has been used by businesses, scientists and governments for years to produce market research reports. A primary use for data mining is to analyse patterns of behaviour.

It can be easily be divided into stages

Pre-processing

Once the objective for the data that has been deemed to be useful and able to be interpreted is known, a target data set has to be assembled. Logically data mining can only discover data patterns that already exist in the collected data, therefore the target dataset must be able to contain these patterns but small enough to be able to succeed in its objective within an acceptable time frame.

The target set then has to be cleansed. This removes sources that have noise and missing data.

The clean data is then reduced into feature vectors,(a summarized version of the raw data source) at a rate of one vector per source. The feature vectors are then split into two sets, a "training set" and a "test set". The training set is used to "train" the data mining algorithm(s), while the test set is used to verify the accuracy of any patterns found.

Data mining

Data mining commonly involves four classes of task:

Classification - Arranges the data into predefined groups. For example email could be classified as legitimate or spam.
Clustering - Arranges data in groups defined by algorithms that attempt to group similar items together
Regression - Attempts to find a function which models the data with the least error.
Association rule learning - Searches for relationships between variables. Often used in supermarkets to work out what products are frequently bought together. This information can then be used for marketing purposes.

Validation of Results

The final stage is to verify that the patterns produced by the data mining algorithms occur in the wider data set as not all patterns found by the data mining algorithms are necessarily valid.

If the patterns do not meet the required standards, then the preprocessing and data mining stages have to be re-evaluated. When the patterns meet the required standards then these patterns can be turned into knowledge.

Source : http://ezinearticles.com/?Data-Mining-Introduction&id=2731583

Wednesday, 11 January 2017

Data Mining - Efficient in Detecting and Solving the Fraud Cases

Data Mining - Efficient in Detecting and Solving the Fraud Cases

Data mining can be considered to be the crucial process of dragging out accurate and probably useful details from the data. This application uses analytical as well as visualization technology in order to explore and represent content in a specific format, which is easily engulfed by a layman. It is widely used in a variety of profiling exercises, such as detection of fraud, scientific discovery, surveys and marketing research. Data management has applications in various monetary sectors, health sectors, bio-informatics, social network data research, business intelligence etc. This module is mainly used by corporate personals in order to understand the behavior of customers. With its help, they can analyze the purchasing pattern of clients and can thus expand their market strategy. Various financial institutions and banking sectors use this module in order to detect the credit card fraud cases, by recognizing the process involved in false transactions. Data management is correlated to expertise and talent plays a vital role in running such kind of function. This is the reason, why it is usually referred as craft rather than science.

The main role of data mining is to provide analytical mindset into the conduct of a particular company, determining the historical data. For this, unknown external events and fretful activities are also considered. On the imperious level, it is more complicated mainly for regulatory bodies for forecasting various activities in advance and taking necessary measures in preventing illegal events in future. Overall, data management can be defined as the process of extracting motifs from data. It is mainly used to unwrap motifs in data, but more often, it is carried out on samples of the content. And if the samples are not of good representation then the data mining procedure will be ineffective. It is unable to discover designs, if they are present in the larger part of data. However, verification and validation of information can be carried out with the help of such kind of module.

Source:http://ezinearticles.com/?Data-Mining---Efficient-in-Detecting-and-Solving-the-Fraud-Cases&id=4378613

Monday, 2 January 2017

Data Mining

Data Mining

Data mining is the retrieving of hidden information from data using algorithms. Data mining helps to extract useful information from great masses of data, which can be used for making practical interpretations for business decision-making. It is basically a technical and mathematical process that involves the use of software and specially designed programs. Data mining is thus also known as Knowledge Discovery in Databases (KDD) since it involves searching for implicit information in large databases. The main kinds of data mining software are: clustering and segmentation software, statistical analysis software, text analysis, mining and information retrieval software and visualization software.

Data mining is gaining a lot of importance because of its vast applicability. It is being used increasingly in business applications for understanding and then predicting valuable information, like customer buying behavior and buying trends, profiles of customers, industry analysis, etc. It is basically an extension of some statistical methods like regression. However, the use of some advanced technologies makes it a decision making tool as well. Some advanced data mining tools can perform database integration, automated model scoring, exporting models to other applications, business templates, incorporating financial information, computing target columns, and more.

Some of the main applications of data mining are in direct marketing, e-commerce, customer relationship management, healthcare, the oil and gas industry, scientific tests, genetics, telecommunications, financial services and utilities. The different kinds of data are: text mining, web mining, social networks data mining, relational databases, pictorial data mining, audio data mining and video data mining.

Some of the most popular data mining tools are: decision trees, information gain, probability, probability density functions, Gaussians, maximum likelihood estimation, Gaussian Baves classification, cross-validation, neural networks, instance-based learning /case-based/ memory-based/non-parametric, regression algorithms, Bayesian networks, Gaussian mixture models, K-Means and hierarchical clustering, Markov models, support vector machines, game tree search and alpha-beta search algorithms, game theory, artificial intelligence, A-star heuristic search, HillClimbing, simulated annealing and genetic algorithms.

Some popular data mining software includes: Connexor Machines, Copernic Summarizer, Corpora, DocMINER, DolphinSearch, dtSearch, DS Dataset, Enkata, Entrieva, Files Search Assistant, FreeText Software Technologies, Intellexer, Insightful InFact, Inxight, ISYS:desktop, Klarity (part of Intology tools), Leximancer, Lextek Onix Toolkit, Lextek Profiling Engine, Megaputer Text Analyst, Monarch, Recommind MindServer, SAS Text Miner, SPSS LexiQuest, SPSS Text Mining for Clementine, Temis-Group, TeSSI®, Textalyser, TextPipe Pro, TextQuest, Readware, Quenza, VantagePoint, VisualText(TM), by TextAI, Wordstat. There is also free software and shareware such as INTEXT, S-EM (Spy-EM), and Vivisimo/Clusty.

Source : http://ezinearticles.com/?Data-Mining&id=196652

Wednesday, 28 December 2016

Data Mining - Retrieving Information From Data

Data Mining - Retrieving Information From Data

Data mining definition is the process of retrieving information from data. It has become very important now days because data that is processed is usually kept for future reference and mainly for security purposes in a company. Data transforms is processed into information and it is mostly used in different ways depending on what information one is extracting and from where the person is extracting the information.

It is commonly used in marketing, scientific information and research work, fraud detection and surveillance and many more and most of this work is done using a computer. This definition can come in different terms data snooping, data fishing and data dredging all this refer to data mining but it depends in which department one is. One must know data mining definition so that he can be in a position to make data.

The method of data mining has been there for so many centuries and it is used up to date. There were early methods which were used to identify data mining there are mainly two: regression analysis and bayes theorem. These methods are never used now days because a lot of people have advanced and technology has really changed the entire system.

With the coming up or with the introduction of computers and technology, it becomes very fast and easy to save information. Computers have made work easier and one can be able to expand more knowledge about data crawling and learn on how data is stored and processed through computer science.

Computer science is a course that sharpens one skill and expands more about data crawling and the definition of what data mining means. By studying computer science one can be in a position to know: clustering, support vector machines and decision trees there are some of the units that are found on computer science.

It's all about all this and this knowledge must be applied here. Government institutions, small scale business and supermarkets use data.

The main reason most companies use data mining is because data assist in the collection of information and observations that a company goes through in their daily activity. Such information is very vital in any companies profile and needs to be checked and updated for future reference just in case something happens.

Businesses which use data crawling focus mainly on return of investments, and they are able to know whether they are making a profit or a loss within a very short period. If the company or the business is making a profit they can be in a position to give customers an offer on the product in which they are selling so that the business can be a position to make more profit in an organization, this is very vital in human resource departments it helps in identifying the character traits of a person in terms of job performance.

Most people who use this method believe that is ethically neutral. The way it is being used nowadays raises a lot of questions about security and privacy of its members. Data mining needs good data preparation which can be in a position to uncover different types of information especially those that require privacy.

A very common way in this occurs is through data aggregation.

Data aggregation is when information is retrieved from different sources and is usually put together so that one can be in a position to be analyze one by one and this helps information to be very secure. So if one is collecting data it is vital for one to know the following:

    How will one use the data that he is collecting?
    Who will mine the data and use the data.
    Is the data very secure when am out can someone come and access it.
    How can one update the data when information is needed
    If the computer crashes do I have any backup somewhere.

It is important for one to be very careful with documents which deal with company's personal information so that information cannot easily be manipulated.

source : http://ezinearticles.com/?Data-Mining---Retrieving-Information-From-Data&id=5054887

Friday, 16 December 2016

One of the Main Differences Between Statistical Analysis and Data Mining

One of the Main Differences Between Statistical Analysis and Data Mining

Two methods of analyzing data that are common in both academic and commercial fields are statistical analysis and data mining. While statistical analysis has a long scientific history, data mining is a more recent method of data analysis that has arisen from Computer Science. In this article I want to give an introduction to these methods and outline what I believe is one of the main differences between the two fields of analysis.

Statistical analysis commonly involves an analyst formulating a hypothesis and then testing the validity of this hypothesis by running statistical tests on data that may have been collected for the purpose. For example, if an analyst was studying the relationship between income level and the ability to get a loan, the analyst may hypothesis that there will be a correlation between income level and the amount of credit someone may qualify for.

The analyst could then test this hypothesis with the use of a data set that contains a number of people along with their income levels and the credit available to them. A test could be run that indicates for example that there may be a high degree of confidence that there is indeed a correlation between income and available credit. The main point here is that the analyst has formulated a hypothesis and then used a statistical test along with a data set to provide evidence in support or against that hypothesis.

Data mining is another area of data analysis that has arisen more recently from computer science that has a number of differences to traditional statistical analysis. Firstly, many data mining techniques are designed to be applied to very large data sets, while statistical analysis techniques are often designed to form evidence in support or against a hypothesis from a more limited set of data.

Probably the mist significant difference here, however, is that data mining techniques are not used so much to form confidence in a hypothesis, but rather extract unknown relationships may be present in the data set. This is probably best illustrated with an example. Rather than in the above case where a statistician may form a hypothesis between income levels and an applicants ability to get a loan, in data mining, there is not typically an initial hypothesis. A data mining analyst may have a large data set on loans that have been given to people along with demographic information of these people such as their income level, their age, any existing debts they have and if they have ever defaulted on a loan before.

A data mining technique may then search through this large data set and extract a previously unknown relationship between income levels, peoples existing debt and their ability to get a loan.

While there are quite a few differences between statistical analysis and data mining, I believe this difference is at the heart of the issue. A lot of statistical analysis is about analyzing data to either form confidence for or against a stated hypothesis while data mining is often more about applying an algorithm to a data set to extract previously unforeseen relationships.

Source:http://ezinearticles.com/?One-of-the-Main-Differences-Between-Statistical-Analysis-and-Data-Mining&id=4578250

Wednesday, 7 December 2016

Data Mining vs Screen-Scraping

Data Mining vs Screen-Scraping

Data mining isn't screen-scraping. I know that some people in the room may disagree with that statement, but they're actually two almost completely different concepts.

In a nutshell, you might state it this way: screen-scraping allows you to get information, where data mining allows you to analyze information. That's a pretty big simplification, so I'll elaborate a bit.

The term "screen-scraping" comes from the old mainframe terminal days where people worked on computers with green and black screens containing only text. Screen-scraping was used to extract characters from the screens so that they could be analyzed. Fast-forwarding to the web world of today, screen-scraping now most commonly refers to extracting information from web sites. That is, computer programs can "crawl" or "spider" through web sites, pulling out data. People often do this to build things like comparison shopping engines, archive web pages, or simply download text to a spreadsheet so that it can be filtered and analyzed.

Data mining, on the other hand, is defined by Wikipedia as the "practice of automatically searching large stores of data for patterns." In other words, you already have the data, and you're now analyzing it to learn useful things about it. Data mining often involves lots of complex algorithms based on statistical methods. It has nothing to do with how you got the data in the first place. In data mining you only care about analyzing what's already there.

The difficulty is that people who don't know the term "screen-scraping" will try Googling for anything that resembles it. We include a number of these terms on our web site to help such folks; for example, we created pages entitled Text Data Mining, Automated Data Collection, Web Site Data Extraction, and even Web Site Ripper (I suppose "scraping" is sort of like "ripping"). So it presents a bit of a problem-we don't necessarily want to perpetuate a misconception (i.e., screen-scraping = data mining), but we also have to use terminology that people will actually use.

Source: http://ezinearticles.com/?Data-Mining-vs-Screen-Scraping&id=146813

Saturday, 3 December 2016

An Easy Way For Data Extraction

An Easy Way For Data Extraction

There are so many data scraping tools are available in internet. With these tools you can you download large amount of data without any stress. From the past decade, the internet revolution has made the entire world as an information center. You can obtain any type of information from the internet. However, if you want any particular information on one task, you need search more websites. If you are interested in download all the information from the websites, you need to copy the information and pate in your documents. It seems a little bit hectic work for everyone. With these scraping tools, you can save your time, money and it reduces manual work.

The Web data extraction tool will extract the data from the HTML pages of the different websites and compares the data. Every day, there are so many websites are hosting in internet. It is not possible to see all the websites in a single day. With these data mining tool, you are able to view all the web pages in internet. If you are using a wide range of applications, these scraping tools are very much useful to you.

The data extraction software tool is used to compare the structured data in internet. There are so many search engines in internet will help you to find a website on a particular issue. The data in different sites is appears in different styles. This scraping expert will help you to compare the date in different site and structures the data for records.

And the web crawler software tool is used to index the web pages in the internet; it will move the data from internet to your hard disk. With this work, you can browse the internet much faster when connected. And the important use of this tool is if you are trying to download the data from internet in off peak hours. It will take a lot of time to download. However, with this tool you can download any data from internet at fast rate.There is another tool for business person is called email extractor. With this toll, you can easily target the customers email addresses. You can send advertisement for your product to the targeted customers at any time. This the best tool to find the database of the customers.

However, there are some more scraping tolls are available in internet. And also some of esteemed websites are providing the information about these tools. You download these tools by paying a nominal amount.

Source: http://ezinearticles.com/?An-Easy-Way-For-Data-Extraction&id=3517104