Tuesday, 9 June 2015

Scraping Services - Assuring Scraping Success with Proxy Data Scraping

Have you ever heard of "Data Scraping?" Data Scraping is the process of collecting useful data that has been placed in the public domain of the internet (private areas too if conditions are met) and storing it in databases or spreadsheets for later use in various applications. Data Scraping technology is not new and many a successful businessman has made his fortune by taking advantage of data scraping technology.

Sometimes website owners may not derive much pleasure from automated harvesting of their data. Webmasters have learned to disallow web scrapers access to their websites by using tools or methods that block certain ip addresses from retrieving website content. Data scrapers are left with the choice to either target a different website, or to move the harvesting script from computer to computer using a different IP address each time and extract as much data as possible until all of the scraper's computers are eventually blocked.

Thankfully there is a modern solution to this problem. Proxy Data Scraping technology solves the problem by using proxy IP addresses. Every time your data scraping program executes an extraction from a website, the website thinks it is coming from a different IP address. To the website owner, proxy data scraping simply looks like a short period of increased traffic from all around the world. They have very limited and tedious ways of blocking such a script but more importantly -- most of the time, they simply won't know they are being scraped.

You may now be asking yourself, "Where can I get Proxy Data Scraping Technology for my project?" The "do-it-yourself" solution is, rather unfortunately, not simple at all. Setting up a proxy data scraping network takes a lot of time and requires that you either own a bunch of IP addresses and suitable servers to be used as proxies, not to mention the IT guru you need to get everything configured properly. You could consider renting proxy servers from select hosting providers, but that option tends to be quite pricey but arguably better than the alternative: dangerous and unreliable (but free) public proxy servers.

There are literally thousands of free proxy servers located around the globe that are simple enough to use. The trick however is finding them. Many sites list hundreds of servers, but locating one that is working, open, and supports the type of protocols you need can be a lesson in persistence, trial, and error. However if you do succeed in discovering a pool of working public proxies, there are still inherent dangers of using them. First off, you don't know who the server belongs to or what activities are going on elsewhere on the server. Sending sensitive requests or data through a public proxy is a bad idea. It is fairly easy for a proxy server to capture any information you send through it or that it sends back to you. If you choose the public proxy method, make sure you never send any transaction through that might compromise you or anyone else in case disreputable people are made aware of the data.

A less risky scenario for proxy data scraping is to rent a rotating proxy connection that cycles through a large number of private IP addresses. There are several of these companies available that claim to delete all web traffic logs which allows you to anonymously harvest the web with minimal threat of reprisal. Companies such as offer large scale anonymous proxy solutions, but often carry a fairly hefty setup fee to get you going.

The other advantage is that companies who own such networks can often help you design and implementation of a custom proxy data scraping program instead of trying to work with a generic scraping bot. After performing a simple Google search, I quickly found one company (www.ScrapeGoat.com) that provides anonymous proxy server access for data scraping purposes. Or, according to their website, if you want to make your life even easier, ScrapeGoat can extract the data for you and deliver it in a variety of different formats often before you could even finish configuring your off the shelf data scraping program.

Whichever path you choose for your proxy data scraping needs, don't let a few simple tricks thwart you from accessing all the wonderful information stored on the world wide web!

Source: http://ezinearticles.com/?Assuring-Scraping-Success-with-Proxy-Data-Scraping&id=248993

Tuesday, 2 June 2015

Twitter Scraper Python Library

I wanted to save the tweets from Transparency Camp. This prompted me to turn Anna‘s basic Twitter scraper into a library. Here’s how you use it.

Import it. (It only works on ScraperWiki, unfortunately.)

from scraperwiki import swimport

search = swimport('twitter_search').search

Then search for terms.

search(['picnic #tcamp12', 'from:TCampDC', '@TCampDC', '#tcamp12', '#viphack'])

A separate search will be run on each of these phrases. That’s it.

A more complete search

Searching for #tcamp12 and #viphack didn’t get me all of the tweets because I waited like a week to do this. In order to get a more complete list of the tweets, I looked at the tweets returned from that first search; I searched for tweets referencing the users who had tweeted those tweets.

from scraperwiki.sqlite import save, select

from time import sleep

# Search by user to get some more

users = [row['from_user'] + ' tcamp12' for row in \

select('distinct from_user from swdata where from_user where user > "%s"' \

% get_var('previous_from_user', ''))]

for user in users:

    search([user], num_pages = 2)

    save_var('previous_from_user', user)

    sleep(2)

By default, the search function retrieves 15 pages of results, which is the maximum. In order to save some time, I limited this second phase of searching to two pages, or 200 results; I doubted that there would be more than 200 relevant results mentioning a particular user.

The full script also counts how many tweets were made by each user.

Library

Remember, this is a library, so you can easily reuse it in your own scripts, like Max Richman did.

Source: https://scraperwiki.wordpress.com/2012/07/04/twitter-scraper-python-library/